Polymer modification of asphalt binder is the solution of choice to enhance the durability of roads exposed to heavy traffic or harsh climates. The added performance asphalt binder achieves through polymer modification is required to meet the evolving expectations of drivers, road authorities and the wider community. As pioneers in asphalt modification, Kraton leads the paving industry by offering new and innovative polymers that deliver greater performance and processability. With a global supply network and service second to none, Kraton offers its platform of higher performing polymers to an evermore challenging range of paving applications.

ABOUT KRATON CORPORATION
Kraton Corporation (NYSE: KRA) is a leading global producer of styrenic block copolymers, specialty polymers and high-value performance products derived from pine wood pulp co-products. Kraton’s polymers are used in a wide range of applications, including adhesives, coatings, consumer and personal care products, sealants and lubricants, and medical, packaging, automotive, paving and roofing applications. As the largest global provider in the pine chemicals industry, the company's pine-based specialty products are sold into adhesive, road and construction and tire markets, and it produces and sells a broad range of performance chemicals into markets that include fuel additives, oilfield chemicals, coatings, metalworking fluids and lubricants, inks and mining. Kraton offers its products to a diverse customer base in numerous countries worldwide.
Kraton Polymers is the leading supplier of Styrenic Block Copolymers (SBC’s)

- Market leader for asphalt modifiers
- Global manufacturing capability in US, Europe, Asia and South America
- Technology and innovation leader
- Service second to none
- Customers in over 70 countries
- Reliable supplier and trusted partner
- Track record of dedications to the industry

SBS block copolymers are the leading modifier for asphalt modification as it meets all these requirements.

SBS Modified Asphalt: The Ecological Choice

- That Makes Economic Sense
- An Outstanding Performance Record
- Meeting Today’s Challenges For Asphalt Pavements

Unique SBS Properties

- Soluble and highly efficient with low processing viscosity
- Bitumen extended polymer network in the binder
- Improved fatigue resistance at intermediate temperatures
- Fatigue resistance through toughness and enhanced civil healing
- Full recyclability and minimum life cycle carbon footprint
- Improved smoothness through durability over a road's lifetime
- Reduced maintenance costs and the associated construction delays to traffic and noise emissions in built-up areas
- Full reactivity and minimum life cycle carbon footprint
- Consistent binder and speedy construction

Kraton Polymers Innovation:
A Heritage Carried Forward

- Patented enhanced compatibility polymers
- Highly modified binders for exceptional fatigue and rut resistance
- Modified base course binders with step change in toughness
- Polymers for superior emulsion properties and ease of production

Kraton Polymers Applications Beyond Asphalt Paving

- Modified bitumen helps for road and bridge deck waterproofing
- Enhanced toughness, resilience and processing of sealants and coatings
- Road marking paint with superior retro-reflective glass bead retention
- Hot melt adhesives for use in high speed manufacturing of consumer goods
- Pressure sensitive adhesives such as tapes and labels
- In compouds for enhanced feel, grip, toughness and appearance of products ranging from toys to packaging
- Replaces natural rubber latex in superior synthetic Kraton™ IR Latex in various applications

WHAT IS SBS?

SBS (styrene-butadiene-styrene) block copolymer is a thermoplastic synthetic rubber granulate characterized by a molecule with a rubbery polystyrene midblock, either linear or multi-arm, with hard polybutadiene blocks at each tip. Polystyrene and polybutadiene, when mixed together, will not form a single-phase blend. Like water and oil they separate. But as the polystyrene and polybutadiene are chemically attached in SBS, the phase separation can only take place on a micro-scale, without segregation on macro scale. This allows the polymer’s rigid blocks to essentially push the polybutadiene and blocks of other SBS molecules to form polymer network domains, linking all molecules together to form a three dimensional elastic network. As the links are physical and not chemical, the network dissociates when heated and reforms in cold.

The use of atomic polymerization ensures exact nano-engineered molecular weights of each of the blocks and controlled structures of the molecules. Variations in molecular weight, arm structure and polymerization conditions produce a wide grade range for targeted applications.

In asphalt modification, SBS polymers are able to absorb oily components from the asphalt to as much as 10 times the polymer volume. The volume of the network formed by the linked styrene domains is thereby increased extending throughout the binder.

This gives the asphalt elastic properties over a much wider temperature range, reducing the viscous behavior at high temperature and the brittle behavior at low temperature.

Applications Of Kraton Polymers In Asphalt

- Wearing courses for high traffic or harsh climate roads
- Pavement preservative overlays
- Crack control overlays
- High performance base courses
- Waterproofing bridge deck asphalt
- Stopping resistant porous asphalt
- Racetrack and airport pavements
- Asphalt emulsives for chip seals with superior stone retention

Working With Kraton Polymer Towards Asphalt Solutions

- Knowledgeable and industry focused sales force
- Technical services and application expertise
- Polymer, binder, asphalt mix and application development
- Formulation, processing and equipment advice to produce modified binders

SBS block copolymers are the leading modifier for asphalt modification as it meets all these requirements.

SBS Modified Asphalt: The Ecological Choice

- That Makes Economic Sense
- An Outstanding Performance Record
- Meeting Today’s Challenges For Asphalt Pavements

Unique SBS Properties

- Soluble and highly efficient with low processing viscosity
- Bitumen extended polymer network in the binder
- Improved fatigue resistance at intermediate temperatures
- Fatigue resistance through toughness and enhanced civil healing
- Full recyclability and minimum life cycle carbon footprint
- Improved smoothness through durability over a road’s lifetime
- Reduced maintenance costs and the associated construction delays to traffic and noise emissions in built-up areas
- Full reactivity and minimum life cycle carbon footprint
- Consistent binder and speedy construction

Kraton Polymers Innovation:
A Heritage Carried Forward

- Patented enhanced compatibility polymers
- Highly modified binders for exceptional fatigue and rut resistance
- Modified base course binders with step change in toughness
- Polymers for superior emulsion properties and ease of production

Kraton Polymers Applications Beyond Asphalt Paving

- Modified bitumen helps for road and bridge deck waterproofing
- Enhanced toughness, resilience and processing of sealants and coatings
- Road marking paint with superior retro-reflective glass bead retention
- Hot melt adhesives for use in high speed manufacturing of consumer goods
- Pressure sensitive adhesives such as tapes and labels
- In compouds for enhanced feel, grip, toughness and appearance of products ranging from toys to packaging
- Replaces natural rubber latex in superior synthetic Kraton™ IR Latex in various applications

WHAT IS SBS?

SBS (styrene-butadiene-styrene) block copolymer is a thermoplastic synthetic rubber granulate characterized by a molecule with a rubbery polystyrene midblock, either linear or multi-arm, with hard polybutadiene blocks at each tip. Polystyrene and polybutadiene, when mixed together, will not form a single-phase blend. Like water and oil they separate. But as the polystyrene and polybutadiene are chemically attached in SBS, the phase separation can only take place on a micro-scale, without segregation on macro scale. This allows the polymer’s rigid blocks to essentially push the polybutadiene and blocks of other SBS molecules to form polymer network domains, linking all molecules together to form a three dimensional elastic network. As the links are physical and not chemical, the network dissociates when heated and reforms in cold.

The use of atomic polymerization ensures exact nano-engineered molecular weights of each of the blocks and controlled structures of the molecules. Variations in molecular weight, arm structure and polymerization conditions produce a wide grade range for targeted applications.

In asphalt modification, SBS polymers are able to absorb oily components from the asphalt to as much as 10 times the polymer volume. The volume of the network formed by the linked styrene domains is thereby increased extending throughout the binder.

This gives the asphalt elastic properties over a much wider temperature range, reducing the viscous behavior at high temperature and the brittle behavior at low temperature.

Applications Of Kraton Polymers In Asphalt

- Wearing courses for high traffic or harsh climate roads
- Pavement preservative overlays
- Crack control overlays
- High performance base courses
- Waterproofing bridge deck asphalt
- Stopping resistant porous asphalt
- Racetrack and airport pavements
- Asphalt emulsives for chip seals with superior stone retention

Working With Kraton Polymer Towards Asphalt Solutions

- Knowledgeable and industry focused sales force
- Technical services and application expertise
- Polymer, binder, asphalt mix and application development
- Formulation, processing and equipment advice to produce modified binders

Kraton Polymers Applications Beyond Asphalt Paving

- Modified bitumen helps for road and bridge deck waterproofing
- Enhanced toughness, resilience and processing of sealants and coatings
- Road marking paint with superior retro-reflective glass bead retention
- Hot melt adhesives for use in high speed manufacturing of consumer goods
- Pressure sensitive adhesives such as tapes and labels
- In compouds for enhanced feel, grip, toughness and appearance of products ranging from toys to packaging
- Replaces natural rubber latex in superior synthetic Kraton™ IR Latex in various applications

WHAT IS SBS?

SBS (styrene-butadiene-styrene) block copolymer is a thermoplastic synthetic rubber granulate characterized by a molecule with a rubbery polystyrene midblock, either linear or multi-arm, with hard polybutadiene blocks at each tip. Polystyrene and polybutadiene, when mixed together, will not form a single-phase blend. Like water and oil they separate. But as the polystyrene and polybutadiene are chemically attached in SBS, the phase separation can only take place on a micro-scale, without segregation on macro scale. This allows the polymer’s rigid blocks to essentially push the polybutadiene and blocks of other SBS molecules to form polymer network domains, linking all molecules together to form a three dimensional elastic network. As the links are physical and not chemical, the network dissociates when heated and reforms in cold.

The use of atomic polymerization ensures exact nano-engineered molecular weights of each of the blocks and controlled structures of the molecules. Variations in molecular weight, arm structure and polymerization conditions produce a wide grade range for targeted applications.

In asphalt modification, SBS polymers are able to absorb oily components from the asphalt to as much as 10 times the polymer volume. The volume of the network formed by the linked styrene domains is thereby increased extending throughout the binder.

This gives the asphalt elastic properties over a much wider temperature range, reducing the viscous behavior at high temperature and the brittle behavior at low temperature.